Ora Matushansky, SFL (CNRS/Université Paris-8)/UiL OTS/Utrecht University
email: O.M.Matushansky @uu.nl
homepage: http://www.trees-and-lambdas.info/matushansky/

THE SYNTAX OF MODIFIED NUMERALS AND THE SEMANTICS OF DERIVED DEGREES Workshop "The pragmatics of quantifiers: implicature and presupposition - experiment and theory", ZAS Berlin, June 6-7, 2018

1. INTRODUCTION

The so-called "modified numerals" have mostly been analyzed as involving composition with the cardinal:
(1) a. [[more than ten] books]
comparative numeral
b. [[at least ten] books]
c. [[about ten] books]
adverbial numeral prepositional numeral

Compelling evidence can, however, be provided against this view and for a different structure (Geurts and Nouwen 2007, Arregi 2010, Ionin and Matushansky [in press], etc.):
(2)
a. [more than [np ten books]]
comparative numeral
b. [at least [NP ten books]] adverbial numeral
c. [about [NP ten books]] prepositional numeral
Needless to say this requires completely different composition.
This talk:
> syntactic evidence for (2)
$>$ some semantic consequences and possible treatments
> questions for further discussion

2. The Syntax of modified numerals

Evidence against the accepted view: case-marking and word order

2.1. Case-marking

The labels in (1) and (2) reflect the fact that approximation can be achieved by a variety of syntactic means
Prepositions are known to assign case, as are comparative markers. In (1) they should assign case to the cardinal, in (2), to the entire NP

Russian demonstrates the latter: the genitive case assigned by the comparative bol'še 'more' and by the preposition okolo 'about' surfaces also on the noun:
(3) a. Maša kupila dva šará. unmodified numeral Masha bought two.ACC balloon.PAUC
'Mary bought two balloons.'
b. Maša kupila bol'še dvux šarov. comparative + numeral Mary buy.PAST.F more two.GEN balloon.PL.GEN 'Mary bought more than two balloons.'
c. Maša kupila okolo dvux jaščikov knig. $\mathrm{P}+$ numeral Mary buy.PAST.F about two.GEN box.PL.GEN book.PL.GEN 'Mary bought about two boxes of books.'

[^0]In German the situation is more difficult to diagnose:
(4) Fischels Verschwinden gegen ein-en Monat nach Ostern

Plank 2004 Fischel's disappearance towards one-MSG.ACC month after Easter Fischel's disappearance at approximately one month after Easter.
According to Plank, case assignment by the preposition is only detectable where there is no external case assigner (which overrides the case assigned by the preposition, see also Pankau 2018)

2.2. Word order

Arregi 2010: in Hebrew and in Basque, 'one' is linearized on the other side of the NP than all other cardinals. Showing this for Hebrew:
a. Dani kana sefer exad.
Dani buy.PAST book one
'Dani bought one book.'
b. Dani kana shney sfarim.
Dani buy.PAST two book.PL
'Dani bought two books.'

Hebrew, Arregi 2010, exx. 13

The modifiers, however, remain in the same position:
(6)
a. Dani kana yoter mi-sefer exad. Hebrew, Arregi 2010, exx. 14 Dani buy.PAST more from-book one 'Dani bought more than one book.'
b. Dani kana yoter mi-šney sfarim.

Dani buy.PAST more from-two book.PL
'Dani bought more than two books.'
(7)
$\begin{array}{lll}\text { a. } & \text { Dani kana lefaxot sefer exad. } & \text { Hebrew, Nora Boneh, p.c. } \\ \text { Dani buy.PAST to-less book one } & \\ \text { 'Dani bought at least one book.' } \\ \text { b. lefaxot šloša sfarim. } & \\ & \text { Dani kana lana buy.PAST to-less three book.PL } & \\ & \text { Dani bun bought at least three books.' }\end{array}$
Basque provides exactly the same arguments, plus also for prepositional numerals:
In Hebrew, around one kilogram is infelicitous, a bare NP should be used instead (around kilogram)
(8) a. Kilo bat azukre inguru erosi d-u-t. Basque, Itxaso Rodriguez, p.c. Kilogram one sugar.ABS around buy 3.ABS-have-1SG.ERG 'I have bought around/about one kilogram of sugar.'
b. Hiru kilo azukre inguru erosi d-u-t. Three kilogram sugar.ABS around buy 3.ABS-have-1SG.ERG 'I have bought around/about three kilograms of sugar.'
The cardinal does not form a constituent with the "modifier", the entire NP does

2.3. Indefinite measures

Matushansky and Zwarts 2017: there is no cardinal in prepositional measures:
(9) a. around a pound
b. between a kilometer and a mile

And only the NP for the preposition to compose with in singular prepositional measures in languages without articles:

```
(10) okolo litra (vodki)
    around liter.GEN vodka.GEN
    around a liter (of vodka)
```

Needless to say, the same is true for comparative numerals:
(11) a. more than a pound but less than a kilo of flour
b. bol'še litra (vodki) more liter.GEN vodka.GEN more than a liter (of vodka)
For these no one would object to the [more than/around [a measure]] grouping
Two potential solutions for prepositional numerals:
> measure phrases denote degrees, modified numerals behave like measure phrases, so cardinals are degrees (cf. Kennedy 2013, 2015, Rothstein 2013, 2016, 2017)
> measure phrases denote degrees, modified numerals behave like measure phrases, so any quantized indefinite NP can be a degree (Matushansky and Ruys 2015a, b, Matushansky and Zwarts 2017)

Guess what I choose

The list of my reasons for doing so is long. Treating cardinals as degrees is extremely difficult to reconcile with the fact that complex cardinals are linguistically composed expressions (see Rothstein 2017 for an attempt and Ionin and Matushansky [in press] to see how it fails and why complex cardinals are linguistic). Any quantized indefinite NPs can function as measure phrases given the appropriate context (This series is seven books long). Quantized indefinite NPs may show the syntax of measure phrases (in Slavic languages, for instance). Measure nouns themselves, being relational, do not behave as degrees (Ruys 2017, Matushansky and Ruys 2012, 2014, Matushansky, Ruys and Zwarts 2017). Combining cardinals with NPs becomes very complicated if cardinals are degrees (you need a covert many). And there is good evidence that anything can be a derived degree (Matushansky and Ionin 2014).

3. ON THE SEMANTICS OF "PREPOSITIONAL NUMERALS"

Matushansky and Zwarts 2017: what do "prepositional numerals" tell us about measurement?
(12) a. Don't touch the steering wheel if you have drunk over five glasses of wine.
b. I ate around a pound of jam.
c. The mass of the meteorite was estimated at under 66 tons.
d. I was swimming between a kilometer and a mile four days a week.

Our goal: a minimum of difference between the spatial and degree uses of prepositions
(13) a. The picture is over the mantel. over expresses a vertical relation between two material objects in 3D space
b. I ate over a pound of jam.
over expresses a vertical relation between two abstract containers in 1D space

Prior work: the semantics and pragmatics of $u p$ to (Nouwen 2008, 2010, Schwarz, Buccola and Hamilton 2012, Blok 2013, 2016a, b): connection to the directional preposition exploited, but not derived
Our proposal:
There is no such thing as degrees, they are entities in a 1D space
The core of the proposal: measure nouns denote abstract containers located in a vertically oriented half-open one-dimensional space.
Consequences:
> measure phrases denote entities and can therefore combine with prepositions
> algebra of scalar addition and multiplication, i.e., the scalar structure, follows from the properties of one-dimensional space
$>$ the interpretation of spatial prepositions is unchanged
$>\quad$ constraints on the choice of prepositions are explained
The bigger picture: reconstructing degrees as entities in concrete 1D space without the need to postulate a special semantic type or sort
Problems: prepositional numerals are not syntactically PPs!
Corver and Zwarts 2006, Pankau 2018: long list of differences with argument PPs
Matushansky and Zwarts 2017: their internal syntax is that of PPs, it is their external syntax that is not, but what is relevant externally is their semantics
Important: Matushansky and Zwarts 2017 only talk about PP measures, not all "prepositional numerals"

3.1. The concept of an abstract container

Stereotypical properties of concrete containers:
$>$ verticality: a container must be vertical to contain substances
> measurement: a container can map different substances to the same volume unit
Natural properties of abstract containers:
> conceptualized as one-dimensional
> no distinction between container and content (due to one-dimensionality)
> generalized to all quantities (weight, length, ...)
$>$ share one natural zero point (the "ground"; cf. Nouwen 2016), differ in height
> abstract containers can be stacked on top of each other
> two abstract containers with the same height are indistinguishable unless stacked

3.2. Available spatial building blocks (simplified)

Spatial building blocks in vector-space semantics (Zwarts and Winter 2000)
Two types in addition to e and t :
$>\quad$ type p of points
$>\quad$ type v of vectors, represent relations between points
Functions in spatial semantics:
$>\quad$ LOC maps an entity to its spatial boundary* (type $\langle p, t\rangle$)
$>$ a preposition maps a boundary to a particular set of vectors (type $\langle v, t\rangle)$
$>\mathrm{LOC}^{-}$maps a set of vectors to the set of entities that are located at those vectors (type $\langle e, t\rangle$)
(* the only adjustment necessary to the vector space semantics, notational variant for 3D, but crucial for 1D, part of the general schematization/idealization operations in spatial language, cf. Herskovits 1986)

If measures are one-dimensional, nothing needs to be changed in the semantics of over

The question remains, of course, why the set of relevant prepositions is restricted in each language:
> to vertical (over) or dimension-neutral (between) prepositions: because containers are vertically oriented (see Matushansky and Zwarts 2017)
> to a subset of these: normally PPs cannot function as arguments, so the existential conversion in (15) is not normally available. We restrict it to some prepositions
How is it different from simply modifying the meaning of the relevant prepositions so that they can apply to degrees?
Answer: there are independent reasons to make measure nouns a sort of abstract entities

3.3. Summary

If measure nouns denote one-dimensional containers (abstract entities), it is unsurprising that they are nouns and the scalar structure can be derived from spatial structure
The price is some level of abstraction
The advantage is unification

4. DERIVED DEGREES

What happens when ordinary NPs start functioning as differentials? Are they then degrees?
(16) a. This series is two movies/three books/seven cartoons longer?
b. The building is two floors taller.
c. The pirates were now richer by some loot and a dog.

The claim in the literature is that any comparative adjective allows some sort of a differential:
(17) a. You can be $\mathbf{0 . 0 7}$ Einsteins more intelligent.
b. That pyramid was seven acrobats higher.
(17a) is uninteresting: it involves a (non-conventional, yet accommodated) unit of measure. (17b), on the other hand, is like (16): there a regular NP functions as a unit of measure
Examples like (17a) are restricted by conventions on measuring units. (17b) and its ilk seem to be constrained by the predicates involved
And of course, any cardinal-containing NP can function as a differential with more and less:
(18) a. There were 20 people more in the room.
b. There were more than 20 people in the room.

Important properties of measure NPs: indistinguishability of referents (see the 1 D approach above), i.e., lack of individuation, and no existential entailment

4.1. Analyses

Hackl 2000: many is a scalar predicate, taking a degree on the quantity scale (a number) as its first argument:
Actually Hackl argues for treating many as an existential quantifier, but for my purposes here it is not relevant

$$
\begin{equation*}
\llbracket \mathrm{many} \rrbracket=\lambda \mathrm{d} . \lambda \mathrm{x} .|\mathrm{x}|=\mathrm{d} \tag{19}
\end{equation*}
$$

And the comparative more than X is treated as follows:
(20) More than five books are on the table.

Informally, "more books are on the table than there are books in 5 books being on the table" The reason for this complex structure as opposed to treating 5 books as a degree is the infelicity of examples like 'More than 3 people formed a square'. Hackl lodges this infelicity in the comparative phrase.

Kennedy 2015 also treats cardinals as degree-denoting, but then what do you do with μ Ps?
Lots of proposals (see Krifka 1990, Rothstein 2013, 2016, 2017, Rett 2015 for the context of measure nouns) treat cardinals as numbers:
Rett's story is more complicated, actually: she seems to assume that seven acrobats is [7 umits mamy acrobats, with a null measure function μ, but does not focus on this
(21) a. \quad liter $\rrbracket=\lambda \mathrm{n} \lambda \mathrm{P} \lambda \mathrm{x}\left[\mathrm{P}(\mathrm{x}) \wedge\right.$ liter' $\left.^{\prime}(\mathrm{x})=\mathrm{n}\right] \quad$ Krifka 1990
b. \quad kilo $\rrbracket=\lambda \mathrm{n} \lambda \mathrm{x}$. MEASURE WEIGHT, KILO $(\mathrm{x})=\mathrm{n} \quad$ Rothstein 2016

Some (Grosu and Landman 1998, Scontras 2014) propose that degrees are complex entities (and cardinals are still numbers):
（22）a．\quad three $\rrbracket=\lambda P \lambda x . P(x) \wedge \operatorname{DEGREE}_{P}(x)=\langle\mathbf{3}, \mathbf{P}, \mathbf{x}\rangle$
Grosu and Landman 1998
b．$\quad \llbracket \mathrm{kilo} \rrbracket=\lambda \mathrm{k} \lambda \mathrm{n} \lambda \mathrm{x} . \cup_{\mathrm{k}}(\mathrm{x}) \wedge \mu_{\mathrm{kg}}(\mathrm{x})=\mathrm{n}$
Scontras 2014
Their system is incompatible with treating cardinals as degrees（infinite regress）

4．2．The polysemy of nouns

Rett 2014：NPs are ambiguous between degree and individual interpretation（also Solt 2009）：
（23）a．Four pizzas are vegetarian．
individual
b．Four pizzas is more than we need． degree
（24）［ four［M－OP pizzas］］［are vegetarian］］
a．$\quad \llbracket M-O_{P} \operatorname{pizzas} \rrbracket=\lambda d \lambda x \cdot \operatorname{pizzas}(x)^{\wedge} \mu(x)=d$
b．$\quad \llbracket$ four $\mathrm{M}-\mathrm{O}_{\mathrm{P}}$ pizzas】 $=\lambda \mathrm{x} \cdot \operatorname{pizzas}(\mathrm{x})^{\wedge} \mu(\mathrm{x})=4$
c．$\quad \llbracket$ four $M-O_{P}$ pizzas are vegetarian】 $=\lambda x$ ．vegetarian $(x)^{\wedge} \operatorname{pizzas}(x)^{\wedge} \mu(x)=4$
d．$\quad={ }_{\mathrm{EC}} \exists \mathrm{x} . \operatorname{veg} \operatorname{tarian}(\mathrm{x})^{\wedge} \operatorname{pizzas}(\mathrm{x})^{\wedge} \mu(\mathrm{x})=4$
For the degree reading two null operators：
（25）［ four［［ $\mathrm{M}-\mathrm{O}_{\mathrm{Pd}} \mathrm{M}-\mathrm{O}_{\mathrm{Pe}}$ pizzas ］［ is enough ］］］
a．$\quad \llbracket \mathrm{M}-\mathrm{O}_{\mathrm{Pe}} \operatorname{pizzas} \rrbracket=\lambda \mathrm{d} \lambda \mathrm{x} \cdot \operatorname{pizzas}(\mathrm{x})^{\wedge} \mathrm{m}_{\text {quantity }}(\mathrm{x})=\mathrm{d}$
b．$\quad={ }_{\mathrm{EC}} \lambda \mathrm{d} \exists \mathrm{x}\left[\operatorname{pizzas}(\mathrm{x})^{\wedge} \mathrm{m}_{\text {quantity }}(\mathrm{x})=\mathrm{d}\right]$
c．$\quad \llbracket \mathrm{M}-\mathrm{O}_{\mathrm{Pd}} \mathrm{M}-\mathrm{O}_{\mathrm{Pe}}$ pizzas $\rrbracket=\lambda \mathrm{d}^{\prime} . \mu_{\mathrm{d}}\left(\lambda \mathrm{d} \exists \mathrm{x}\left[\operatorname{pizzas}(\mathrm{x})^{\wedge} \mathrm{m}_{\text {quantity }}(\mathrm{x})=\mathrm{d}\right]=\mathrm{d}^{\prime}\right)$
d．\quad is enough $\rrbracket=\lambda d$ ．enough (d)
e．$\quad \llbracket \mathrm{M}-\mathrm{O}_{\mathrm{Pd}} \mathrm{M}-\mathrm{O}_{\mathrm{Pe}}$ pizzas is enough $\rrbracket=\lambda \mathrm{d}^{\prime} . \mu_{\mathrm{d}}\left(\lambda \mathrm{d} \exists \mathrm{x}\left[\operatorname{pizzas}(\mathrm{x})^{\wedge} \mathrm{m}_{\text {quantity }}(\mathrm{x})=\mathrm{d}\right]=\right.$ $\mathrm{d}^{\prime} \wedge$ enough $\left(\mathrm{d}^{\prime}\right)$
f．\llbracket four $\rrbracket=\lambda \mathrm{D} . \mathrm{D}(4)$
g．【four $\mathrm{M}-\mathrm{O}_{\mathrm{Pd}} \mathrm{M}-\mathrm{O}_{\mathrm{Pe}}$ pizzas is enough］$=\mu_{\mathrm{d}}\left(\lambda \mathrm{d} \exists \mathrm{x}\left[\operatorname{pizzas}(\mathrm{x})^{\wedge} \mathrm{m}_{\text {quantity }}(\mathrm{x})=\mathrm{d}\right]=\right.$ 4^{\wedge} enough（4）

This analysis crucially relies on the cardinal being external to the NP．
I also have the impression that（25）entails that 4 beers is also enough．
This doesn＇t seem to work for derived measures in（16）without further stipulations
The basic intuition that an entity－denoting NP can be coerced to denote its own measure with respect to the relevant property is sound，I＇m just not sure why this is done NP－internally．
The connection between regular and measure nouns is also examined for pseudo－partitives in Matushansky and Zwarts 2017 and Snyder and Barlew 2016
Snyder and Barlew 2016 basically propose that glasses is ambiguous between container and content readings，but it is also possible to derive a reflexive measure reading where glasses are filled with glasses．

5．CONCLUSION AND FURTHER QUESTIONS

The syntax of modified numerals is such that the modifier needs to be combined with the NP as a whole

This is consistent with the independently required need to construct derived degrees
Joost Zwarts and I have tried to think of a way of doing to so with 1D semantics，but it seems to lead to odd results for pseudo－partitives（cf．Snyder and Barlew 2016）

5.1. Prepositional numerals and case

Pankau 2018 assumes the structure in (1) for prepositional cardinals and shows that external case-assignment overrides case-assignment by the preposition:
a. mit gegen Hundert Arbeiter-n

Plank 2004
with towards hundred worker-DAT.PL
with approximately hundred workers
b. Peter hilft DAT $_{\text {ACC }}$ die zehn Männern/*Männer. Pankau 2018

Peter helps around the ten men.DAT/ACC
Peter helped around ten men.
The situation might be somewhat more complex, actually. If the external preposition assigns accusative and the internal one, dative, ineffability ensues:
a. *Sie gingen durch $_{\text {ACC }}$ unter $_{\text {DAT }} 50 \%$ des Waldes. they walked through under 50% the.GEN forest
b. *Sie kämpften gegen $_{\text {ACC }}$ unter $_{\text {DAT }} 50 \%$ der Angestellten. they fought against under 50% the.GEN employees
So it doesn't seem to be the case that the internal preposition fails to assign case

5.2. Why are cardinals not degrees?

There's a paper (Ionin and Matushansky 2006) and a book (Ionin and Matushansky [in press]) where it is argued that cardinals should be treated as modifiers (type $\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle$)

The reason is the need to provide a system for constructing complex cardinals. Suppose that it was all wrong and cardinals refer to numbers (Frege 1884). The following issues then need to be resolved:
> How do cardinals combine with NPs?
$>$ How do cardinals combine with measure nouns?
> How do measure nouns function without a cardinal?
Some of these questions are raised and answered in Kennedy 2015 and Rothstein 2013, 2016, 2017

Complex cardinal formation

Rothstein divides cardinals into two categories, claiming that multiplicands are not numbers.
Kennedy is not concerned with complex cardinals at all
NP-internal cardinals
Rothstein assumes an $n \rightarrow\langle e, t\rangle$ type-shift.
Kennedy hypothesizes a cardinality function \# (cf. also Salmon 1997)

Cardinals in measure phrases

Rothstein takes cardinals to be arguments of measure nouns (which are relations between a number and a substance).
Kennedy is not concerned with the composition of measure phrases
Measure phrases without cardinals are generally not examined at all

6. References

Arregi, Karlos. 2010. The syntax of comparative numerals. In Proceedings of NELS 40, ed. by Seda Kan, Claire Moore-Cantwell and Robert Staubs. Amherst, MA: GLSA Publications.

Blok, Dominique. 2013. Directional prepositions as numeral modifiers, MA thesis: Utrecht University.
Blok, Dominique. 2016a. Directional numeral modifiers: an implicature-based account. In Proceedings of NELS 46, ed. by Christopher Hammerly and Brandon Prickett, pp. 123-136. Amherst, Massachusetts: GLSA.
Blok, Dominique. 2016b. The semantics and pragmatics of directional numeral modifiers. Semantics and Linguistic Theory 25, pp. 471-490.
Corver, Norbert, and Joost Zwarts. 2006. Prepositional numerals. Lingua 116, pp. 811-835.
Frege, Gottlöb. 1884. Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl. Breslau: Wilhelm Koebner.
Geurts, Bart, and Rick Nouwen. 2007. At least et al.: The semantics of scalar modifiers. Language 83, pp. 533-559.
Grosu, Alexander, and Fred Landman. 1998. Strange relatives of the third kind. Natural Language Semantics 6, pp. 125-170.
Hackl, Martin. 2000. Comparative Quantifiers, Doctoral dissertation, MIT.
Herskovits, Annette. 1986. Language and Spatial Cognition: An Interdisciplinary Study of the Prepositions in English. Cambridge: Cambridge University Press.
Ionin, Tania, and Ora Matushansky. 2006. The composition of complex cardinals. Journal of Semantics 23, pp. 315-360.
Ionin, Tania, and Ora Matushansky. [in press]. Cardinals: The Syntax and Semantics of Cardinal-containing Expressions. Cambridge, Massachusetts: MIT Press.
Kennedy, Christopher. 2013. A scalar semantics for scalar readings of number words. In From Grammar to Meaning: the Spontaneous Logicality of Language, ed. by Ivano Caponigro and Carlo Cecchetto, pp. 172-200. Cambridge: Cambridge University Press.
Kennedy, Christopher. 2015. A "de-Fregean" semantics (and neo-Gricean pragmatics) for modified and unmodified numerals. Semantics and Pragmatics 8, pp. 1-44.
Krifka, Manfred. 1990. Four thousand ships passed through the lock: Object-induced measure functions on events. Linguistics and Philosophy 13, pp. 487-520.
Matushansky, Ora, and Tania Ionin. 2014. More than one solution. In Proceedings of CLS 47, ed. by Carissa Abrego-Collier, Arum Kang, Martina Martinovic and Chieu Nguyen, pp. 231-245. Chicago: Chicago Linguistic Society, University of Chicago.
Matushansky, Ora, E. G. Ruys, and Joost Zwarts. 2017. On the structure and composition of pseudo-partitives. Paper presented at Séminaire LaGraM, UMR 7023, Paris, January 16, 2017.
Matushansky, Ora, and E.G. Ruys. 2012. Numeral NPs, to a degree. Paper presented at RALFe 2012, Université Paris VIII, Saint-Denis, November 29-30, 2012.
Matushansky, Ora, and E.G. Ruys. 2014. On the syntax of measure. Paper presented at TINdag 2014, Utrecht, February 1, 2014.
Matushansky, Ora, and E.G. Ruys. 2015a. 4000 measure NPs: another pass through the шлюз. In Proceedings of FASL 23, ed. by Małgorzata Szajbel-Keck, Roslyn Burns and Darya Kavitskaya, pp. 184-205. Ann Arbor, Michigan: Michigan Slavic Publications.
Matushansky, Ora, and E.G. Ruys. 2015b. Measure for measure. In Slavic Grammar from a Formal Perspective: The 10th Anniversary FDSL Conference, ed. by Gerhild Zybatow, Petr Biskup, Marcel Guhl, Claudia Hurtig, Olav Mueller-Reichau and Maria Yastrebova, pp. 317-330. Frankfurt: Peter Lang.
Matushansky, Ora, and Joost Zwarts. 2017. Making space for measures. In NELS 47: Proceedings of the Forty-Seventh Annual Meeting of the North East Linguistic Society, vol. 2, ed. by Andrew Lamont and Katerina Tetzlo, pp. 261-274. Amherst, Massachusetts: GLSA (Graduate Linguistics Student Association).
Nouwen, Rick. 2008. Directionality in modified numerals: the case of up to. In Proceedings of Semantics and Linguistic Theory (SALT) 18, ed. by Tova Friedman and Satoshi Ito, pp. 569-582: eLanguage.

Nouwen, Rick. 2010. Two kinds of modified numerals. Semantics and Pragmatics 3, pp. 141.

Nouwen, Rick. 2016. Making sense of the spatial methaphor for number in natural language. Ms., Utrecht University.
Pankau, Andreas. 2018. The structure of approximative numerals in German. Glossa: a journal of general linguistics 3 (1), pp. 1-48.
Plank, Frans. 2004. From local adpositions to approximative adnumerals, in German and wherever. Studies in Language 28, pp. 165-201.
Rett, Jessica. 2014. The polysemy of measurement. Lingua 143, pp. 242-266.
Rett, Jessica. 2015. Measure phrase equatives and modified numerals. Journal of Semantics 32, pp. 425-475.
Rothstein, Susan. 2013. A Fregean semantics for number words. In Proceedings of the 19th Amsterdam Colloquium, ed. by Maria Aloni, Michael Franke and Floris Roelofsen, pp. 179-186. Available at http://www.illc.uva.nl/AC/AC2013/uploaded_files/inlineitem/23_Rothstein.pdf.
Rothstein, Susan. 2016. Counting and Measuring: a theoretical and crosslinguistic account. Baltic International Yearbook of Cognition, Logic and Communication 11, pp. 1-49.
Rothstein, Susan. 2017. The Semantics of Counting and Measuring. Cambridge: Cambridge University Press.
Ruys, E.G. 2017. Two Dutch many's and the structure of pseudo-partitives. Glossa 2, pp. 733.

Salmon, Nathan. 1997. Wholes, parts, and numbers. Noûs 31, pp. 1-15.
Schwarz, Bernhard, Brian Buccola, and Michael Hamilton. 2012. Two types of class B numeral modifiers: A reply to Nouwen 2010. Semantics and Pragmatics 5, pp. 1-25.
Scontras, Gregory. 2014. The Semantics of Measurement, Doctoral dissertation, Harvard.
Snyder, Eric, and Jefferson Barlew. 2016. The universal measurer. In The Proceedings of Sinn und Bedeutung (SuB) 20, ed. by Nadine Bade, Polina Berezovskaya and Anthea Schöller, pp. 658-675. Available at http://semanticsarchive.net/sub2015/SeparateArticles/Snyder-Barlew-SuB20.pdf.
Solt, Stephanie. 2009. The Semantics of Adjectives of Quantity, Doctoral dissertation, CUNY.
Zwarts, Joost, and Yoad Winter. 2000. Vector space semantics: a model-theoretic analysis of locative prepositions. Journal of Logic, Language and Information 9, pp. 169-211.

[^0]: Acknowledgments: This presentation draws upon joint work with Tania Ionin, Eddy Ruys and Joost Zwarts, none of whom should be held responsible by the use I'm making of it here.

