Ora Matushansky, SFL (CNRS/Université Paris-8/SFL)/UiL OTS/Utrecht University email: Ora.Matushansky@cnrs.fr
homepage: http://www.trees-and-lambdas.info/matushansky/

NUMERALS AND NUMBERS

Numerals in Grammar and Beyond, Leiden University, October 17-18, 2019

1. Introduction

Cardinals have two main uses: as cardinality predicates or modifiers and as number words:
(1) a. The apostles were twelve in number. predicate
b. What are the eight planets of the Solar system? modifier
(2) a. Two and two makes four.
number words
b. Eight is the third power of two.

The predicate use is cross-linguistically restricted: it is not available, for instance, in Irish or Scottish Gaelic (Acquaviva 2008:189fn.) or in Russian:
The opposite can also be true: in some languages cardinals cannot be modifiers, see below
(3)

a.	Apostolov bylo/*byli dvenadcat'. apostles.GEN	was.N.SG/were twelve
Apostles were twelve. (lit. 'Of (the) apostles there was twelve')	Russian	

b. *Apostoly byli dvenadcat'. apostles.NOM were twelve

Hypothesis to be defended:
The use of cardinals as number words is secondary and derived from their linguistic use
Evidence (cf. Ionin and Matushansky 2006, 2018):
$>$ the nominal status of number words
$>$ the construction of complex cardinals as a syntactic operation
Further support from psychology

2. THE SYNTACTIC COMPLEXITY OF COMPLEX CARDINALS

Ionin and Matushansky 2018: complex cardinals are constructed in syntax
Evidence that we have is threefold:
> Multiplication has the syntax of sisterhood: no intervening elements
$>$ Addition has a different syntax involving coordinators and prepositions
$>$ There are other operations that are all encoded by regular syntactic means
The internal syntax of complex cardinals is normal syntax

2.1. The syntax of multiplication

Cross-linguistically observed patterns are those of modification or complementation
Juxtaposition, no overt marking (English, German, French, etc., but also Persian - Mahootian 1997, Mace 2003, Perry 2005; Lezgian - Haspelmath 1993, Mano - Khachaturyan 2015, Maori - Bauer 2003, Mixtec - Macaulay 1996, etc.):
(4) one hundred million people

Agreement with the higher cardinal:
(5)
a. b-ùdì mà-wúmò má-báá

Gyeli, Grimm 2015:196
2-person ${ }_{1 / 2} 6$-ten T/6 $^{6} \quad 6$-two
'20 people'
Romanian, Dobrovie-Sorin and Giurgea 2013:137
b. două sute two.F hundred ${ }_{F}$ 'two hundred'
Genitive or partitive case (e.g., Slavic, Finno-Ugric) or preposition (e.g., Romanian):
(6) a. kaksi.kymmentä. yksi. tuhatta

Finnish, Karttunen 2006 two ten.PART one thousand.PART 'twenty-one thousand'
b. cin.zeci de mii de oameni Romanian, Corver 2001 fif.ty of thousands of men 'fifty thousand people'
Construct state:
(7) ParbaS-u
mi 3 at-i
Palf-i
rajul-in
Arabic
four-NOM.CS hundred.PL-GEN.CS
thousand-GEN.CS
man-GEN
'four hundred thousand men'

Not all cardinals behave the same (more on this below), but the patterns are systematic

2.2. The syntax of addition

Juxtaposition is frequent, but other complementation strategies are unattested and various means of indicating the formation of a complex or plural entity are used (see Hanke 2010 for less common strategies than):
(8) coordination
$\begin{array}{llll}\text { a. Šlošim ve- šaloš } & \text { Hebrew } \\ \text { thirty and } \\ \text { thirty three }\end{array}$
b. Parbas-at-u Paalaaf-in wa- xams-at-u rijaal-in four-FSG-NOM thousand.PL-GEN and five-FSG-NOM man.PL-GEN 'four thousand and five men'

Arabic, Zabbal 2005
c. khe pyhe-da 'ni:
twenty half-and two 'thirty'

Dzongkha, Mazaudon 2007 (see also van Driem 1992:151)
(9) locative preposition: Biblical Welsh ar 'on'
a. un ar ddeg Biblical Welsh, Hurford 1975:163-164
one on ten
'eleven'
b. pedwar ar bymtheg four on fifteen 'nineteen'
c. naw ar hugain nine on twenty
'twenty-nine'
(10) comitative preposition: Tamashek (Tuareg of Mali) $\grave{\partial d} d$ 'with'
a. mæráw médd-æn ə̀d sæmmos

Heath 2005:251-252
ten.M man-MPL with five 'fifteen men'
b. mæraw-æ̀t dede-en j̀d sæmmós-æt ten-F woman-FPL with five-FPL 'fifteen women'
(11) case-marking or other change of the higher conjunct: Telugu (Siromoney 1968)
a. reNDu.wandal.u

Krishnamurti and Gwynn 1985:108
two.hundred.NOM
'two hundred'
b. reNDu.wandal.a yaabhay okaTi
two.hundred.OBL fifty.NOM one.NOM
'two hundred fifty one'
c. nuur.u
hundred.NOM
'one hundred'
d. nuuT.a lraway okaTi
hundred.obl twenty.NOM one.NOM
'one hundred twety one'
In addition (pun intended), subtractive strategies are also used:
(12) locative preposition: Latin $d e$ 'from'
un. de. viginti
one from twenty
'nineteen'
(13) caritative preposition: Romani bi 'without'
a. deš bi-jekh
Welsh Romani, Elšik and Matras 2006:167
ten without-one
'nine'
b. bi-trin-engiro trianda Russian Romani, Elšik and Matras 2006:167 without-three-GEN thirty 'twenty seven'
(14) overcounting:
a. II menn hins ellifta tigar Old Norse, Menninger 1969 two men in eleventh ten 'one hundred and two men'
b. metsy ma.ben trok

Chungli Ao, Clark 1893:45 twenty , NEG.brought six 'sixteen'
c. mükyi müpen tērǒk Ao Mongsen, Mills 1926:343 (see also Coupe 2012) twenty not.reached six 'sixteen'
The linguistic strategies employed for addition argue against a separate linguistic system for the construction of complex cardinals

3. Against a separate cognitive system

The standard take on NP-internal cardinals treats them to the exclusion of the lexical NP (see Zabbal 2005, Wagiel 2018, among others, for a theory with the n-denotation of cardinals):

NumP

Zabbal 2005

A complex cardinal is then constructed as a unit. How?
Di Sciullo 2015, 2017:

b.

Implicit: the numerals here denote numbers rather than cardinality predicates
What is expected from the semantics and syntax of F ?
$>\mathrm{F}$ should perform the relevant arithmetic operation
> all arithmetic operators should have the same syntax or randomly show properties of modification, coordination and complementation
> all numbers formed by the same operation should have the same internal syntax
The reality is very different

3.1. Variant syntax within complex cardinals

Multiplicative case-assignment: the Russian cardinals 'two', 'three' and 'four' assign paucal case, whereas 'five' and higher assign genitive case:

```
a. četyre tysjači
        four thousand.PAUC
                                    šagov
                                    Russian
                            step.PL.GEN
        'four thousand steps'
    b. pjat' tysjač šagov
        five thousand.PL.GEN step.PL.GEN
        'five thousand steps'
```

Potential solution (cf. Zabbal 2005): the mediating head assigns the case determined by its specifier
Explanation still needed: why is the lexical NP in (17a) not assigned paucal?

Biblical Welsh addition: besides being null (arguably, in the morphological juxtaposition in (18b)), $\mathrm{F}_{[A D D]}$ can be locative or coordinative in function of the higher addend:
a. cant a phedwar 'one hundred and four'
b. pedwar ar bym.theg four on fif.teen 'nineteen'
c. tri ar ddeg a thri ugain a deu-cant three on ten and three twenty and two-hundred 'two hundred and seventy three'

Note the reversed order, excluding the same analysis as above
Russian approximative inversion distinguishes bare multiplication from bare addition
The phenomenon (Mel'čuk 1985, Fowler 1987, Franks 1994, 1995, Billings 1995, Isakadze 1998, Yadroff and Billings 1998, Pereltsvaig 2006b, a, Zaroukian 2012, Matushansky 2015, Rothstein and Khrizman 2015): the inversion of the normal linear order between a cardinal and a noun with the semantic effect of speaker uncertainty as to the exact quantity:
a. pjat' časov
five hour-GEN.PL
five hours
b. časov pjat'
hour-GEN.PL five
about five hours
Possible in multiplicative complex cardinals, targeting the first multiplicand:
(20)
a. tysjač sorok rabočix
thousand.PL.GEN forty worker.PL.GEN
about 40,000 workers
b. *rabočix sorok tysjač
worker.PL.GEN forty thousand.PL.GEN
(possible as of workers, 40,000 or the working forty thousands)
Possible in additive complex cardinals, targeting the lexical NP:

```
rabočix sorok pjat'
worker.PL.GEN forty five
about 45 workers
```

b. *pjat' sorok rabočix
five forty worker.PL.GEN
The multiplicand can be fronted in mixed complex cardinals if it is a shared multiplicand of the additive component:
(22) a. *tysjač ètak million sto t_{i} devjat'sot pjat'desjat raz thousand so million hundred nine.hundred fifty times.GEN
b. tysjač ètak sto pjat'desjat t_{i} soldat i oficerov thousand so hundred fifty soldiers.GEN and officers.GEN some one hundred and fifty thousand soldiers and officers
Matushansky 2015: Russian addition is coordination

Cross-linguistically unattested: coordinative syntax for multiplication

3.2. Multiplication and addition in F

Assuming that simplex cardinals denote numbers (type n, cf. Rothstein 2013, 2016, 2017, or d, see Scontras 2013, 2014, Kennedy 2013, 2015, and Ouwayda 2014), arithmetic operations involved in the formation of complex cardinals have to be encoded in F:
Rothstein's story is more complicated, she has two denotations for simplex cardinals
(23) a. $\quad \llbracket \mathrm{F}_{[\text {ADD }]} \rrbracket=\lambda \mathrm{n} \cdot \lambda \mathrm{m} \cdot \lambda \mathrm{o} \cdot \mathrm{o}=\mathrm{n}+\mathrm{m}$
b. $\left.\quad \llbracket \mathrm{F}_{[\text {мuLт }]}\right]=\lambda \mathrm{n} . \lambda \mathrm{m} . \lambda$ о $. \mathrm{o}=\mathrm{n} * \mathrm{~m}$

Multiplication is cognitively very complex (more than addition or subtraction)
Yet multiplication is systematically encoded without an overt exponent
Furthermore, "natural" arithmetic is non-abstract:
> Dehaene 1997:187-193: a patient with acalculia (e.g., 3-2=2) clearly capable of interpreting and constructing complex cardinals or performing simple arithmetic operations when non-abstract (how many hours elapsed between 9am and 11am)
> Gilmore, McCarthy and Spelke 2007: abstract arithmetic addition is a fairly late development, which lags behind the ability to manipulate NP-internal complex cardinals or to estimate the results of adding or subtracting non-abstract quantities
> Spaepen et al. 2011: "even when integrated into a numerate society, individuals who lack input from a conventional language" "do not consistently extend the correct number of fingers when communicating about sets greater than three, nor do they always correctly match the number of items in one set to a target set when that target set is greater than three"
> McCrink and Spelke 2010: the core cognitive operations of addition and scalar multiplication are not precise (the way their symbolic counterparts are)

Potential explanation: F might originally involve this core arithmetic, which is then updated to its symbolic counterpart
Problem: this core arithmetic operates with small multipliers
Summary: it is impossible to exclude the hypothesis that there is an F. But it is very unlikely

4. NUMBER WORDS VS. SIMPLEX CARDINALS

Simplex cardinals that are not fully nominal are a closed class
Ionin and Matushansky 2006, 2018: unlike NP-internal cardinals, number words show full syntactic uniformity: unique form for the adjectival lower cardinals (no variation in gender or number) and lack of gender and number features capable of triggering agreement:
(24) Dva/*dve pljus tri budet/*budut četyre.
two.m/ $\mathrm{N} / *$ two.F plus three be.FUT.3SG/be.PAST.PL four
'Two plus three will be four.'
If NP-internal cardinals are derived from number words, we expect uniform behavior
Cross-linguistically cardinals can be shown to show properties of major lexical classes (see Donohue 2005):
verbs, as in Seri (Moser and Marlett 1994) or in Samoan (Mosel and Hovdhaugen 1992)
> nouns or adjectives (Corbett 1978, Hurford 2003)

Corbett 1978: cross-linguistically, cardinals in any given language tend to form a continuum from the more adjectival lower cardinals to the nominal higher cardinals:
$>\quad$ agreement vs. inherent ϕ-features
$>$ modification vs. genitive case assignment/construct state/ezafe
This is a historically determined generalization
Table 1: The Russian cardinal "squish"

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3 , 4}$	$1 / 2$ (pol)	$\mathbf{5 - 1 0 0}$	many/few	$\mathbf{1 0 0 0}$	million
inherent animacy							+	
inherent gender							+	+
number on lex. NP	SG	PL	SG		PL			
case		paucal	ADN	ADN		ADN/GEN	GEN	
number and animacy agreement	+	+	+					
gender agreement	+	+						

Table 2: The Spanish cardinal "squish"

	1	$2-100$	$200-900$	1000	millon +
gender agreement	+	-	+	-	-
indefinite article and plural morphology	-	-	-	-	+
genitive preposition	-	-	-	-	+

Table 3: The Classical Arabic cardinal "squish" (after Blake 1912)

	$1(2)$	$3-10$	$20-90$	$100+$
post-nominal (like APs)	+	-	-	-
gender agreement	+	+	-	-
construct state	no	yes	indeterminate	yes
case assignment	-	genitive	accusative	genitive
number on the lexical NP	singular (dual)	plural	singular	singular

4.1. Potential objection 1: ordinals

Even though ordinals are clearly morphologically derived from cardinals (see Stump 2010 for the full complexity), they can exhibit variant behavior where it comes to suppletion:
a. unan 'one':

kentañ	unan-ved
first	one-ORD 'first'
'first'	

b. unan-ved warn-ugent one-ORD on-twenty 'twenty-first'

| a. daou 'two': | eil
 second
 'second' |
| :--- | :--- |\quad Breton, Stump 2010

b. eil warn-ugent
second on-twenty
'twenty-second'
But this is not syntactic complexity, it is morphological (i.e., it is not about formal features of lexical items, but about lexical items (roots) themselves)
Categorially, all ordinals are the same

4.2. Potential objection 2: DM-style null affixes

The hypothesis (Marantz 1997, Embick 1997, Harley 1995, Harley and Noyer 1999, etc.) that roots have no lexical category can be extended to cardinals (Fassi Fehri 2018, Wągiel 2018 and maybe Klockmann 2019):

Wągiel 2018
b. $\llbracket-n a s t-\rrbracket=\lambda \mathrm{n}: \operatorname{INTEGER}(\mathrm{n}) . \mathrm{n}+10$
c. $\quad \llbracket \mathrm{CARD} \rrbracket=\lambda n \lambda \mathrm{x}: \operatorname{ATOM}(\mathrm{x}) \cdot|\mathrm{x}|=\mathrm{n}$

The featural composition of the numeral head can vary in function of the simplex cardinal (or there can be an a or an n there)
Problem: different cardinals may have different featural specification (cf. Table 1-Table 3)
Russian is a case in point: there is only one cardinal (pol-) that is nominal, combines with a singular lexical NP and assigns adnumerative case to it
There are no other lexical items with this set of properties
The other semi-functional fraction, četvert' 'quarter' assigns genitive and has a different declension class
All this information needs to be encoded on the phonologically null x head that can only be used with one root
This is highly implausible as an analysis

5. THE DERIVATION OF NUMBER WORDS

In their mathematical use cardinals denote entities with a specific property:
(28) $\llbracket 5 \rrbracket=\mathrm{xx}$. the number of digits on a limb of a mammal, the number of arms of a starfish, the number of lobes on a maple leaf, etc.
It's a property that sets have

Ionin and Matushansky 2006, 2018: NP-internal cardinals are semantically modifiers:
$\llbracket t h r e e \rrbracket=\lambda P \in D_{\langle e, t\rangle} \cdot \lambda x \in D_{e} \cdot \exists S \in D_{\langle e, t\rangle}[\Pi(S)(x) \wedge|S|=3 \wedge \forall s \in S P(s)]$
$\Pi(S)(x)$ is true iff
partition
S is a cover of x , and
$\forall z, y \in S\left[z=y \vee \neg \exists \mathrm{a}\left[\mathrm{a} \leq_{i} \mathrm{z} \wedge \mathrm{a} \leq_{i} \mathrm{y}\right]\right]$ (Forbidding that cells of the partition overlap ensures that no element is counted twice.)
(31) A set of individuals C is a cover of a plural individual X iff

X is the sum of all members of $\mathrm{C}: \sqcup \mathrm{C}=\mathrm{X}$
This denotation makes it easy to achieve multiplication
But it cannot be right for languages where cardinals are predicates, there the basic type must be different
Ionin and Matushansky 2018 derive the names of numbers from the corresponding cardinal predicate or modifier by a nominalizer:

b. \quad NOMNUM $(\operatorname{card}\langle\langle e, t\rangle,\langle e, t\rangle\rangle)=1 \mathrm{x} . \forall \mathrm{g}_{\langle\mathrm{e}, \mathrm{t}\rangle} . \forall \mathrm{y}[* \mathrm{~g}(\mathrm{y}) \wedge|\mathrm{y}|=\mathrm{x} \rightarrow \operatorname{card}(\mathrm{g})(\mathrm{y})] \quad$ modifier

Names of numbers are nominal and definite (like proper names)
Question: how to construct a complex cardinal without a noun?
Two options:
$>\quad \mathrm{a}$ null predicative PRO as the complement of the bottommost cardinal(s), with subsequent existential closure
$>$ type-shifting the bottommost cardinal(s) to the predicate type
(33)

b. $\quad \operatorname{MOD} 2 \operatorname{PRED}(\mathrm{M})=\lambda \mathrm{x} . \exists \mathrm{P} \mathrm{M}(\mathrm{P}(\mathrm{x}))$

The former option is stipulative, the latter looks like what happens with inherently transitive nouns like mother when they are used without a complement (When you become a mother...)
This also means that only the option in (32a) is really needed
Problem: if something like (33) is available, how come there are languages where cardinals cannot be predicates?
There are also languages where cardinals cannot be NP-internal:
(34) Ná:ni-ha pokkó:l awáh tóklo-n hí:ca-li-:s.

Koasati, Kimball 1991:358
man-PL ten AND two-SW see-1SG-PAST
'I just saw twelve men.'
The cardinal functions as a subordinate predicate; see is the main verb as the switch reference marker - n indicates
Multiplicative cardinals are formed with no overt marking; the element awáh is only used in cardinals (Kimball 1994:26)

6. Conclusion

Complex cardinals are constructed using linguistic means rather than abstract mathematical operations
Simplex cardinals do not seem to be derived from names of numbers

7. References

Acquaviva, Paolo. 2008. Lexical plurals: a morphosemantic approach. Oxford: Oxford University Press.
Bauer, Winifred. 2003. Maori. London and New York: Taylor \& Francis.
Billings, Loren Allen. 1995. Approximation in Russian and the single-word constraint, Doctoral dissertation, Princeton University. Princeton.
Blake, Frank R. 1912. Comparative syntax of the combinations formed by the noun and its modifiers in Semitic. Journal of the American Oriental Society 32, pp. 201-267.
Clark, Mrs. E. W. [Mary M.]. 1893. Ao Naga Grammar with illustrative phrases and vocabulary. Shillong: Assam Secretariat Printing Office.
Corbett, Greville G. 1978. Universals in the syntax of cardinal numbers. Lingua 46, pp. 355-368.
Corver, Norbert. 2001. On predicate numerals. In Linguistics in the Netherlands 2001, ed. by Ton van der Wouden and Hans Broekhuis, pp. 65-76. Amsterdam: John Benjamins.
Coupe, Alexander R. 2012. Overcounting numeral systems and their relevance to sub-grouping in the Tibeto-Burman languages of Nagaland. Language and Linguistics 13, pp. 193-220.
Dehaene, Stanislas. 1997. The Number Sense. Oxford: Oxford University Press.
Di Sciullo, Anna Maria. 2015. On the domain specificity of the human language faculty and the effects of principles of computational efficiency: contrasting language and mathematics. Revista Linguí/tica 11, pp. 57-70.
Di Sciullo, Anna Maria. 2017. Asymmetry and the Language Faculty. Revista Linguífica 13, pp. 88107.

Dobrovie-Sorin, Carmen and Ion Giurgea. 2013. A Reference Grammar of Romanian, vol. 1: The Noun Phrase. Amsterdam: John Benjamins.
Donohue, Mark. 2005. Numerals and their position in universal grammar. Journal of Universal Language 6, pp. 1-37.
Elšik, Viktor and Yaron Matras. 2006. Markedness and Language Change : The Romani Sample. Berlin: Mouton de Gruyter.
Embick, David. 1997. Voice and interfaces of syntax, Doctoral dissertation, University of Pennsylvania.
Fassi Fehri, Abdelkader. 2018. Constructing Feminine to Mean: Gender, Number, Numeral, and Quantifier Extensions in Arabic. Lanham, MD: Lexington Books.
Fowler, George. 1987. The syntax of the genitive case in Russian, Doctoral dissertation, University of Chicago.
Franks, Steven. 1994. Parametric properties of numeral phrases in Slavic. Natural Language \& Linguistic Theory 12, pp. 597-674.
Franks, Steven. 1995. Parameters of Slavic Morphosyntax. Oxford: Oxford University Press.
Gilmore, Camilla, Shannon McCarthy, and Elizabeth Spelke. 2007. Symbolic arithmetic knowledge without instruction. Nature 447, pp. 589-591.
Grimm, M.A. Nadine. 2015. A Grammar of Gyeli, Doctoral dissertation, Humboldt-Universität zu Berlin.
Hanke, Thomas. 2010. Additional rarities in the typology of numerals. In Rethinking Universals: How Rarities affect Linguistic Theory, ed. by Jan Wohlgemuth and Michael Cysouw, pp. 61-90. Boston: De Gruyter Mouton.
Harley, Heidi. 1995. Subjects, Events and Licensing, Doctoral dissertation, MIT.
Harley, Heidi and Rolf Noyer. 1999. Distributed Morphology. GLOT International 4, pp. 3-9.
Haspelmath, Martin. 1993. A Grammar of Lezgian. Berlin: Mouton de Gruyter.
Heath, Jeffrey. 2005. A Grammar of Tamashek (Tuareg of Mali). Berlin: De Gruyter.
Hurford, Jim. 1975. The Linguistic Theory of Numerals. Cambridge: Cambridge University Press.
Hurford, Jim. 2003. The interaction between numerals and nouns. In Noun Phrase Structure in the Languages of Europe, ed. by Frans Plank. Typology of Languages in Europe, pp. 561-620. The Hague: Mouton de Gruyter.
Ionin, Tania and Ora Matushansky. 2006. The composition of complex cardinals. Journal of Semantics 23, pp. 315-360.

Ionin, Tania and Ora Matushansky. 2018. Cardinals: The Syntax and Semantics of Cardinalcontaining Expressions. Cambridge, Massachusetts: MIT Press.
Isakadze, N. V. 1998. Otraženie morfologii i referencial'noj semantiki imennoj gruppy v formal'nom sintaksise, Doctoral dissertation, Moscow State University.
Karttunen, Lauri. 2006. Numbers and Finnish numerals. In A Man of Measure. Festschrift in Honour of Fred Karlsson on his 60th Birthday, ed. by Mickael Suominen, Antti Arppe, Anu Airola, Orvokki Heinämäki, Matti Miestamo, Urho Määttä, Jussi Niemi, Kari K. Pitkänen, and Kaius Sinnemäki. Special Supplement to SKY Journal of Linguistics 19, pp. 407-421. Turku: The Linguistic Association of Finland.
Kennedy, Christopher. 2013. A scalar semantics for scalar readings of number words. In From Grammar to Meaning: the Spontaneous Logicality of Language, ed. by Ivano Caponigro and Carlo Cecchetto, pp. 172-200. Cambridge: Cambridge University Press.
Kennedy, Christopher. 2015. A "de-Fregean" semantics (and neo-Gricean pragmatics) for modified and unmodified numerals. Semantics and Pragmatics 8, pp. 1-44.
Khachaturyan, Maria. 2015. Grammaire du mano Mandenkan 54, pp. 1-252.
Kimball, Geoffrey D. 1991. Koasati Grammar. Omaha, Nebraska: University of Nebraska Press.
Kimball, Geoffrey D. 1994. Koasati Dictionary. Omaha, Nebraska: University of Nebraska Press.
Klockmann, Heidi. 2019. On the many ways of being a base numeral: Numerals 10, 100, and 1000 in Polish and English. Paper presented at 12th Conference on Syntax, Phonology, and Language Analysis (SinFonIJA 12), Masaryk University, Brno, Czechia, September 12, 2019.
Krishnamurti, Bh. and J. P. L. Gwynn. 1985. A Grammar of Modern Telugu. Delhi: Oxford University Press.
Macaulay, Monica. 1996. A Grammar of Chalcatongo Mixtec. Berkeley, California: University of California Press.
Mace, John. 2003. Persian Grammar. London: Routledge.
Mahootian, Shahrzad. 1997. Persian. Descriptive Grammars. London: Routledge.
Marantz, Alec. 1997. No escape from syntax: Don't try morphological analysis in the privacy of your own lexicon. In Proceedings of the 21st Annual Penn Linguistics Colloquium, ed. by Alexis Dimitriadis, Laura Siegel, Clarissa Surek-Clark, and Alexander Williams. University of Pennsylvania Working Papers in Linguistics 4.2, pp. 201-225. Philadelphia: University of Pennsylvania, Penn Linguistics Club.
Matushansky, Ora. 2015. On Russian approximative inversion. In Slavic Grammar from a Formal Perspective: The 10th Anniversary FDSL Conference, ed. by Gerhild Zybatow, Petr Biskup, Marcel Guhl, Claudia Hurtig, Olav Mueller-Reichau, and Maria Yastrebova, pp. 303-316. Frankfurt: Peter Lang.
Mazaudon, Martine. 2007. Number building in Tibeto-Burman languages. Paper presented at NEILS (North-East India Languages Symposium), Gauhati (Assam, India), February 5-9, 2007.
McCrink, Koleen and Elisabeth Spelke. 2010. Core multiplication in childhood. Cognition 116, pp. 204-216.
Mel'čuk, Igor. 1985. Poverxnostnyj sintaksis russkix čislitel'nyx vyraženij. Wiener slawistischer Almanach. Sonderband 16. Vienna: Institut für Slawistik der Universität Wien.
Menninger, Karl. 1969. Number Words and Number Symbols: A Cultural History of Numbers. Cambridge, Mass.: MIT Press. [Translated by Paul Broneer from the revised German edition (1957-58)].
Mills, J. P. 1926. The Ao Nagas London: Macmillan.
Mosel, Ulrike and Even Hovdhaugen. 1992. Samoan reference grammar. Oslo: Scandinavian University Press.
Moser, Mary B. and Stephen A. Marlett. 1994. Los números en seri. In 2 Encuentro de lingüística en el noroeste, memorias, vol. 2, ed. by Zarina Estrada Fernández, pp. 63-79: Departamento de Letras y Lingüística, División de Humanidades y Bellas Artes, Universidad de Sonora, Hermosillo.
Ouwayda, Sarah. 2014. Where Number Lies: Plural marking, numerals, and the collective-distributive distinction, Doctoral dissertation, USC.

Pereltsvaig, Asya. 2006a. Passing by cardinals: In support of head movement in nominals. In Proceedings of FASL 14: The Princeton Meeting, ed. by James Lavine, Steven Franks, Mila Tasseva-Kurktchieva, and Hana Filip, pp. 277-292. Ann Arbor, Michigan Michigan Slavic Publications.
Pereltsvaig, Asya. 2006b. Small nominals. Natural Language \& Linguistic Theory 24, pp. 433-500.
Perry, John R. 2005. A Tajik Persian Reference Grammar. Leiden: Brill.
Rothstein, Susan. 2013. A Fregean semantics for number words. In Proceedings of the 19th Amsterdam Colloquium, ed. by Maria Aloni, Michael Franke, and Floris Roelofsen, pp. 179$186 . \quad$ Available at http://www.illc.uva.nl/AC/AC2013/uploaded_files/inlineitem/23_Rothstein.pdf.
Rothstein, Susan. 2016. Counting and Measuring: a theoretical and crosslinguistic account. Baltic International Yearbook of Cognition, Logic and Communication 11, pp. 1-49.
Rothstein, Susan. 2017. The Semantics of Counting and Measuring. Cambridge: Cambridge University Press.
Rothstein, Susan and Keren Khrizman. 2015. Approximative inversion in Russian as a measure construction. In Slavic Grammar from a Formal Perspective: The 10th Anniversary FDSL Conference, ed. by Gerhild Zybatow and Petr Biskup, pp. 259-272. Frankfurt: Peter Lang.
Scontras, Gregory. 2013. A unified semantics for number marking, numerals, and nominal structure. In Proceedings of Sinn und Bedeutung 17, ed. by Emmanuel Chemla, Vincent Homer, and Grégoire Winterstein, pp. 545-562. Available at http://semanticsarchive.net/sub2012/Scontras.pdf.
Scontras, Gregory. 2014. The Semantics of Measurement, Doctoral dissertation, Harvard.
Siromoney, Rani. 1968. Grammars of number names of certain Dravidian languages. In Grammars for Number Names, ed. by H. Brandt Corstius, pp. 82-90. Dordrecht: D. Reidel.
Spaepen, Elizabet, Marie Coppola, Elizabeth S. Spelke, Susan E. Carey, and Susan Goldin-Meadow. 2011. Number without a language model. Proceedings of the National Academy of Sciences 108, pp. 3163-3168.
Stump, Gregory. 2010. The derivation of compound ordinal numerals: implications for morphological theory. Word Structure 3, pp. 205-233.
van Driem, George. 1992. The Grammar of Dzongkha. Bhutan: Dzongkba Development Commission of the Royal Government of Bhutan.
Wągiel, Marcin. 2018. Several quantifiers are different than others: Polish indefinite numerals. Ms., Masaryk University in Brno.
Yadroff, Michael and Loren Billings. 1998. The syntax of approximative inversion in Russian (and the general architecture of nominal expressions). In Proceedings of the 6th Annual Workshop on Formal Approaches to Slavic Linguistics: The Connecticut Meeting 1997, ed. by Zeljko Bošković, Steven Franks, and William Snyder, pp. 319-338. Ann Arbor, Michigan: Michigan Slavica Publications.
Zabbal, Youri. 2005. The syntax of numeral expressions. Ms., University of Massachusetts, Amherst.
Zaroukian, Erin. 2012. Approximative inversion revisited. In Formal Approaches to Slavic Linguistics 19: the College Park Meeting, ed. by John Bailyn, Ewan Dunbar, Yakov Kronrod, and Chris LaTerza, pp. 146-160. Ann Arbor, Michigan: Michigan Slavic Publications.

